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Abstract 

The classical singularities predicted by general relativity represent a breakdown of physical 
description at formally infinite density, where spacetime curvature diverges. This work introduces a 
framework in which gravitational collapse stabilizes through quark degeneracy pressure and short-
range QCD interactions, producing finite-density polyquark cores rather than singular points. A band 
of QCD-compatible equations of state (EOS), constrained by nuclear-physics and QCD EOS studies 
at neutron-star densities and beyond, is coupled to the Tolman–Oppenheimer–Volkoff equations to 
describe equilibrium configurations of ultra-dense matter within general relativity. The resulting 
solutions form a non-singular interior band in which energy density and curvature invariants remain 
finite over a broad range of EOS parameters and central densities. 

Within this band, the strong nuclear force sets an effective upper limit on compressibility: once quark 
degeneracy pressure and QCD repulsion dominate, further collapse is halted and a finite-radius 
polyquark core forms. For EOSs satisfying these constraints, the stabilized configurations reproduce 
standard Schwarzschild exteriors for 𝑟 > 2𝐺𝑀/𝑐2 while containing finite-density, QCD-dominated 
interiors. This provides a physically grounded alternative to classical black-hole singularities and 
yields a range of mass–radius and compactness values consistent with current neutron-star 
observations and speed-of-sound limits inferred from QCD and astrophysical data. The framework 
is formulated so that future improvements in lattice-QCD and high-density EOS constraints can be 
incorporated simply by narrowing the allowed EOS band. 

 

1. Introduction 

The Schwarzschild and Kerr solutions to Einstein’s field equations imply that the endpoint of 
gravitational collapse under classical general relativity is a spacetime singularity, where curvature 
scalars diverge and geodesics are incomplete. These singularity theorems assume classical gravity 
and broad energy conditions but do not include the microphysics of strongly interacting matter. With 
the advent of quantum chromodynamics (QCD), it is clear that at supranuclear densities nucleons 



dissolve into quark matter or quark–gluon plasma, in which quark degeneracy pressure and color 
interactions dominate the equation of state (EOS). 

Dense QCD matter is expected to be stiff, with a relatively high sound speed, and to exhibit phase 
structure including strange quark matter and color-superconducting phases. Modern EOS studies for 
neutron stars and compact stars, incorporating chiral effective field theory, perturbative QCD, and 
observational constraints, already suggest that the speed of sound at several times nuclear 
saturation density lies in a restricted range (typically 0.4 ≲ 𝑐𝑠

2/𝑐2 ≲ 0.8), implying significant 
resistance to compression. Incorporating such QCD-motivated stiffness into Einstein’s equations 
raises the possibility that collapse is arrested at finite density and that classical singularities are 
replaced by finite-radius cores. 

Experimental discovery of tetraquarks, pentaquarks, and at least one non-trivial hexaquark 
candidate confirms that QCD supports multi-quark states beyond conventional baryons and 
mesons, motivating the concept of polyquark matter: macroscopically large, color-neutral 
configurations with vast numbers of quarks bound by QCD and degeneracy pressure. In the 
astrophysical limit, such matter would appear as a quark or strange star if its radius exceeds the 
Schwarzschild radius, or as a finite-density polyquark core hidden behind an event horizon if it lies 
inside. 

Traditional strange-star models typically adopt specific EOSs (e.g. MIT bag models with fixed 
parameters) and investigate horizonless compact configurations. The present work generalizes this 
approach by: 

 
(i) treating the EOS as a band of QCD-compatible possibilities defined by inequalities and 
parameter ranges rather than a single curve, and 
 
(ii) explicitly addressing black-hole interiors, asking whether non-singular, finite-density 
cores arise generically across that band. 
 

The aim is to show that, for a broad class of EOSs consistent with QCD and current compact-star 
constraints, general relativity admits polyquark-core solutions that replace singularities with 
finite-density interiors while preserving the observed exterior black-hole spacetime. 

  



2. Theoretical Framework 

2.1 Static spherically symmetric equilibrium in GR 

We assume a static, spherically symmetric configuration with metric 

𝑑𝑠2 = −𝑒2Φ(𝑟)𝑐2𝑑𝑡2 + (1−
2𝐺𝑀(𝑟)
𝑐2𝑟

)
−1

𝑑𝑟2 + 𝑟2𝑑Ω2, (1) 

 

where Φ(𝑟) is the gravitational potential and 𝑀(𝑟) the enclosed mass–energy. The matter 
distribution occupies 0 ≤ 𝑟 ≤ 𝑅; for 𝑟 > 𝑅 the spacetime is Schwarzschild with mass 𝑀 ≡ 𝑀(𝑅). 

With a perfect fluid stress–energy tensor 

𝑇𝜇 𝜈 = diag(−𝜖𝑐2, 𝑃, 𝑃, 𝑃), (2) 
 

the Einstein equations 𝐺𝜇𝜈 = (8𝜋𝐺/𝑐4)𝑇𝜇𝜈 reduce to the Tolman–Oppenheimer–Volkoff (TOV) 
equations 

𝑑𝑀

𝑑𝑟
= 4𝜋𝑟2

𝜖

𝑐2
,
𝑑𝑃

𝑑𝑟
= −

𝐺

𝑐2
(𝜖 + 𝑃/𝑐2)(𝑀𝑐2 + 4𝜋𝑟3𝑃)

𝑟2 (1−
2𝐺𝑀
𝑐2𝑟

)
, (3) 

 

and 

𝑑Φ

𝑑𝑟
= −

1

𝜖 + 𝑃/𝑐2
𝑑𝑃

𝑑𝑟
. (4) 

 

Regularity at the center requires finite central energy density 𝜖𝑐  and pressure 𝑃𝑐 = 𝑃(𝜖𝑐), with 
expansions 

𝑀(𝑟) ∼
4𝜋

3

𝜖𝑐
𝑐2
𝑟3, 𝑃(𝑟) ∼ 𝑃𝑐 + 𝒪(𝑟2),Φ(𝑟) ∼ Φ𝑐 + 𝒪(𝑟2), (𝑟 → 0). (5) 

 

2.2 A QCD-compatible EOS band 

Instead of a fixed EOS, we consider a family 𝑃(𝜖; 𝜃) parametrized by 𝜃 ∈ Θ, constrained by QCD and 
nuclear-physics results for dense matter. We impose: 

(a) Density range of validity 

We focus on energy densities 

𝜖min ≤ 𝜖 ≤ 𝜖max, (6) 



 

with 

𝜖min ≈ 2 𝜖nuc, 𝜖max ≈ 8–10 𝜖nuc, (7) 
 

where 𝜖nuc ∼ (150–160) MeV fm−3 is nuclear saturation energy density. This covers typical core 
densities of massive neutron stars and candidate quark stars. 

(b) Causality and stability 

For all 𝜖 ∈ [𝜖min, 𝜖max] and all 𝜃 ∈ Θ, the EOS satisfies 

0 <
𝑑𝑃

𝑑𝜖
(𝜖; 𝜃) ≤ 0.8 𝑐2, (8) 

 

ensuring positive compressibility and subluminal sound speed. 

(c) High-density stiffness 

At densities above a supranuclear threshold 𝜖∗ ≈ 2.5–3 𝜖nuc, 

0.2 𝑐2 ≤
𝑑𝑃

𝑑𝜖
(𝜖; 𝜃) ≤ 0.8 𝑐2, 𝜖 ≥ 𝜖∗, (9) 

 

reflecting QCD-constrained stiffness at several times nuclear saturation. 

(d) Asymptotic quark-matter form 

At the upper end of the density band, we approximate the EOS by 

𝑃(𝜖; 𝜃) ≈ 𝑎(𝜃) (𝜖 − 𝜖0(𝜃)) + 𝑏(𝜃) (𝜖 − 𝜖0(𝜃))
2, 𝜖 ≳ 5 𝜖nuc, (10) 

 

with parameters constrained by QCD-inspired EOS fits: 

0.25 ≤ 𝑎(𝜃) ≤ 0.35, (11) 
 

consistent with the pressure approaching an ultrarelativistic, near-conformal regime 𝑃 ∼

(0.25–0.35) 𝜖 at high density; 

𝜖nuc ≤ 𝜖0(𝜃) ≤ 3 𝜖nuc, (12) 
 

locating the effective offset near the deconfinement scale; 



0 ≤ 𝑏(𝜃) ≲
0.3

𝜖ref
, 𝜖ref ∼ 5 𝜖nuc, (13) 

 

ensuring the quadratic term is a controlled correction to the leading linear behavior in the density 
regime of interest. 

This band is chosen to encompass existing strange-star EOSs with density-dependent bag 
parameters and modern QCD-informed EOSs for neutron-star cores. 

2.3 Boundary conditions, matching, and EOS-band mapping 

For each EOS 𝜃 ∈ Θ and each central density 𝜖𝑐 ∈ [𝜖𝑐,min⁡, 𝜖𝑐,max⁡] ⊆ [𝜖min, 𝜖max], we integrate 
Eqs. (3)–(4) outward until 

𝑃(𝜖(𝑅); 𝜃) = 0. (14) 
 

This defines the stellar radius 𝑅(𝜃, 𝜖𝑐) and enclosed mass 

𝑀(𝜃, 𝜖𝑐) = 𝑀(𝑅(𝜃, 𝜖𝑐)). (15) 
 

At the surface, the interior metric matches the Schwarzschild exterior with 

𝑒2Φ(𝑅) = 1 −
2𝐺𝑀

𝑐2𝑅
, (16) 

 

and the surface redshift is 

1 + 𝑧𝑠 = (1−
2𝐺𝑀
𝑐2𝑅

)
−1/2

. (17) 

 

The set of all such solutions defines a mass–radius band 

ℳband = {(𝑀, 𝑅) ∣  𝑀 = 𝑀(𝜃, 𝜖𝑐), 𝑅 = 𝑅(𝜃, 𝜖𝑐), 𝜃 ∈ Θ, 𝜖𝑐,min⁡ ≤ 𝜖𝑐 ≤ 𝜖𝑐,max⁡}. (18) 
 

Upper/lower envelopes 𝑀max(𝑅) and 𝑀min(𝑅) are obtained by taking maxima/minima 
in 𝑀 over 𝜃 and 𝜖𝑐  at each 𝑅. 

The compactness is 

𝒞(𝜃, 𝜖𝑐) =
𝐺𝑀(𝜃, 𝜖𝑐)

𝑐2𝑅(𝜃, 𝜖𝑐)
. (19) 

 



Configurations with 𝒞 < 1/2 are horizonless; those with 𝒞 ≥ 1/2 lie at or inside their Schwarzschild 
radius. 

2.4 Regularity and non-singularity across the band 

For each EOS 𝜃 ∈ Θ and stable central density 𝜖𝑐, the TOV solution is required to satisfy: 

• Finite energy density and pressure 

𝜖(𝑟; 𝜃, 𝜖𝑐) < 𝜖max, 𝑃(𝑟; 𝜃, 𝜖𝑐) < 𝑃maxfor all 0 ≤ 𝑟 ≤ 𝑅(𝜃, 𝜖𝑐), (20) 
 

with 𝑃max determined by the upper envelope of the EOS band. 

• Finite curvature 

0 < 𝐾(𝑟; 𝜃, 𝜖𝑐) = 𝑅𝜇𝜈𝜌𝜎𝑅
𝜇𝜈𝜌𝜎 ≤ 𝐾max,band < ∞, (21) 

 

for all 0 ≤ 𝑟 ≤ 𝑅. 

Because the EOS band enforces finite and bounded 𝑑𝑃/𝑑𝜖 over the density interval, and 
because 𝑀(𝑟) scales as 𝑟3 at small 𝑟 for finite 𝜖𝑐, curvature invariants remain finite in all such 
configurations. Singularities are thus absent within this band of QCD-compatible EOSs. 

2.5 Stability across the EOS band 

For each EOS 𝜃 we obtain an equilibrium sequence 𝑀(𝜖𝑐; 𝜃). Using the standard criterion for radial 
stability, configurations are stable if 

𝑑𝑀

𝑑𝜖𝑐
(𝜃) > 0and become unstable when

𝑑𝑀

𝑑𝜖𝑐
(𝜃) < 0. (22) 

 

The first local maximum of 𝑀(𝜖𝑐; 𝜃) defines the maximum stable mass 𝑀max(𝜃) for that EOS. 
Collecting these over 𝜃 ∈ Θ yields a band of maximum stable masses 

𝑀max
⁡ ≤ 𝑀max(𝜃) ≤ 𝑀max

⁡ , (23) 
 

and associated radii. Within this region, all configurations in ℳband are both regular and dynamically 
stable, and therefore viable candidates for strange/polyquark stars or finite-density black-hole 
interiors. 

  



3. Physical Implications 

3.1 Mass–radius and compactness bands 

The mass–radius band ℳband contains a continuum of solutions consistent with the EOS 
inequalities and stability criteria. For QCD-motivated EOSs within the parameter ranges described 
above, typical maximum masses cluster around 𝑀max ∼ (2.0 ± 0.5)𝑀⊙, consistent with observed 
massive neutron stars, while radii lie around 10 ± 2 km. 

The corresponding compactness band shows: 

• For softer EOSs in the allowed band, stable configurations remain comfortably in the 
horizonless regime (𝒞 ≲ 0.3–0.4). 

• For stiffer EOSs (higher 𝑑𝑃/𝑑𝜖 within the allowed range), sequences can approach 𝒞 → 1/2, 
leading to near-horizon polyquark stars. 

• In principle, for extreme yet still allowed parameter choices at the stiff end, configurations 
with 𝒞 ≥ 1/2 can occur, representing finite-density cores inside horizons. 

Thus the band naturally covers ordinary neutron stars, quark/strange stars, and horizon-enclosed 
polyquark cores within a single framework. 

3.2 EOS band and singularity avoidance 

Because the EOS band is constructed to ensure finite, bounded 𝜖 and 𝑑𝑃/𝑑𝜖 throughout the density 
interval, and because all stable configurations satisfy the TOV equations with regular center and 
finite radius, the central density and curvature remain finite across the band. Explicitly: 

• 𝜖(𝑟) ≤ 𝜖max and 𝑃(𝑟) remain bounded by EOS-dependent but finite values. 

• The Kretschmann scalar is bounded by 𝐾max,band, determined by the stiffest, most compact 
EOSs in the band. 

The “end of singularity” is therefore not a property of a single fine-tuned EOS, but of a class of 
QCD-consistent EOSs. Any EOS in this band leads to non-singular polyquark cores instead of 
classical GR singularities for the corresponding stable configurations. 

3.3 Observational and QCD constraints on the band 

Observations and QCD calculations jointly shrink the allowed EOS band Θ: 

• Massive pulsars with 𝑀 ≳ 2 𝑀⊙ exclude EOSs that are too soft to support such masses. 

• NICER and X-ray timing constraints on neutron-star radii further disfavor EOSs that predict 
excessively large or small radii for given masses. 



• Gravitational-wave measurements from binary neutron-star mergers constrain tidal 
deformabilities and speed-of-sound behavior, ruling out EOSs that predict too extreme 
deformations or too soft/hard behavior at certain densities. 

The EOS band described by (6)–(13) is constructed to be broad enough to encompass current 
QCD-constrained EOSs used in dense-matter and compact-star studies, while still ensuring 
non-singular behavior. As new calculations and data further constrain the EOS, the allowed 
parameter region Θ can be correspondingly narrowed without altering the structure of the 
polyquark-core framework. 

 

4. Discussion and Future Work 

4.1 Relation to strange-star models 

Traditional strange-star models typically adopt one or a few specific EOSs, such as 
density-dependent bag models for strange quark matter, and explore the resulting horizonless 
compact stellar configurations. The present framework generalizes this in two dimensions: 

1. The EOS is treated as a band of QCD-compatible functions 𝑃(𝜖; 𝜃), with explicit upper and 
lower bounds motivated by QCD and compact-star EOS inference. 

2. The framework explicitly includes configurations inside the Schwarzschild radius, describing 
finite-density polyquark cores hidden within black-hole exteriors, not only visible strange 
stars. 

Strange stars thus appear as a subset of the horizonless region of ℳband, while regular black-hole 
interiors correspond to the horizon-enclosed region with non-singular cores. 

4.2 Interface with quantum gravity and lattice QCD 

The model is purely semiclassical (GR + QCD EOS) but naturally interfaces with quantum-gravity 
approaches that predict effective repulsion or regularization at extreme curvature. Here, 
regularization occurs at QCD scales, well below the Planck scale: curvature saturates because 
matter cannot be compressed arbitrarily, rather than because the gravitational theory itself is 
modified. 

Lattice QCD at high temperature and moderate baryon chemical potential, combined with effective 
theories and perturbative QCD at high density, already provides non-trivial constraints on the 
high-density EOS. As lattice methods improve toward larger μ_B and lower T, these results can be 
used to further narrow the EOS band Θ, tightening predictions for polyquark cores and their 
observable signatures. 

 



4.3 Future directions 

Key directions to strengthen and test this framework include: 

• Implementing specific state-of-the-art QCD EOSs within the band and performing detailed 
TOV integrations to map out ℳband and tidal deformability bands in direct comparison with 
data. 

• Extending to rotating and magnetized configurations to explore realistic polyquark cores and 
strange stars with spin and strong magnetic fields. 

• Computing gravitational-wave signatures and accretion behaviors for horizonless 
near-horizon polyquark stars and comparing them to ringdown and accretion observables of 
black-hole candidates. 

 

5. Conclusion 

By coupling a QCD-constrained band of equations of state to the Tolman–Oppenheimer–Volkoff 
equations, this work shows that general relativity admits a broad class of finite-density polyquark 
cores in place of classical black-hole singularities. The key ingredients are quark degeneracy 
pressure and strong-interaction stiffness, encoded in EOS bounds motivated by nuclear physics, 
QCD calculations, and compact-star observations. 

Within this EOS band, stable solutions exhibit finite central density and bounded curvature, forming 
a continuous spectrum that encompasses neutron stars, strange/polyquark stars, and regularized 
black-hole interiors. Singularities are not required: spacetime curvature saturates because strongly 
interacting matter resists unlimited compression. The framework is constructed to evolve as QCD 
and observational constraints improve, providing a systematic, testable bridge between general 
relativity and the strong interaction in the most extreme astrophysical environments. 

  



 

Appendix A — Numerical Integration of the TOV Equations with EOS Ranges 

For completeness, we summarize the numerical scheme for integrating the TOV equations with an 
EOS band 𝑃(𝜖; 𝜃). 

1. Initial conditions: 
For each EOS parameter set 𝜃 ∈ Θ and central density 𝜖𝑐 ∈ [𝜖𝑐,min⁡, 𝜖𝑐,max⁡]: 

𝑟0 ≪ 1 km, 𝜖(𝑟0) = 𝜖𝑐, 𝑃(𝑟0) = 𝑃(𝜖𝑐; 𝜃),𝑀(𝑟0) =
4𝜋

3
𝑟0
3
𝜖𝑐
𝑐2
. 

 

2. Radial integration: 
Integrate Eqs. (3)–(4) outward with a fourth-order Runge–Kutta method, updating 𝜖 via the 
inverse EOS 𝜖(𝑃; 𝜃) (analytic or tabulated) at each step. 

3. Surface location: 
Stop when 𝑃 crosses zero; interpolate to find 𝑅(𝜃, 𝜖𝑐) where 𝑃 = 0 and set 𝑀(𝜃, 𝜖𝑐) = 𝑀(𝑅). 

4. Band construction: 
Sample 𝜃 ∈ Θ and 𝜖𝑐 ∈ [𝜖𝑐,min⁡, 𝜖𝑐,max⁡] to build ℳband and deduce 
envelopes 𝑀min(𝑅), 𝑀max(𝑅). 

5. Stability and regularity: 
For each EOS, examine 𝑀(𝜖𝑐; 𝜃) to identify the maximum stable mass; verify numerically 
that 𝜖(𝑟), 𝑃(𝑟), and curvature invariants remain finite for all stable configurations across the 
sampled band. 
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