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Abstract

The classical singularities predicted by general relativity represent a breakdown of physical
description at formally infinite density, where spacetime curvature diverges. This work introduces a
framework in which gravitational collapse stabilizes through quark degeneracy pressure and short-
range QCD interactions, producing finite-density polyquark cores rather than singular points. A band
of QCD-compatible equations of state (EOS), constrained by nuclear-physics and QCD EOS studies
at neutron-star densities and beyond, is coupled to the Tolman-Oppenheimer-Volkoff equations to
describe equilibrium configurations of ultra-dense matter within general relativity. The resulting
solutions form a non-singular interior band in which energy density and curvature invariants remain
finite over a broad range of EOS parameters and central densities.

Within this band, the strong nuclear force sets an effective upper limit on compressibility: once quark
degeneracy pressure and QCD repulsion dominate, further collapse is halted and a finite-radius
polyquark core forms. For EOSs satisfying these constraints, the stabilized configurations reproduce
standard Schwarzschild exteriors for r > 2GM /c? while containing finite-density, QCD-dominated
interiors. This provides a physically grounded alternative to classical black-hole singularities and
yields arange of mass-radius and compactness values consistent with current neutron-star
observations and speed-of-sound limits inferred from QCD and astrophysical data. The framework
is formulated so that future improvements in lattice-QCD and high-density EOS constraints can be
incorporated simply by narrowing the allowed EOS band.

1. Introduction

The Schwarzschild and Kerr solutions to Einstein’s field equations imply that the endpoint of
gravitational collapse under classical general relativity is a spacetime singularity, where curvature
scalars diverge and geodesics are incomplete. These singularity theorems assume classical gravity
and broad energy conditions but do not include the microphysics of strongly interacting matter. With
the advent of quantum chromodynamics (QCD), it is clear that at supranuclear densities nucleons



dissolve into quark matter or quark—gluon plasma, in which quark degeneracy pressure and color
interactions dominate the equation of state (EOS).

Dense QCD matter is expected to be stiff, with a relatively high sound speed, and to exhibit phase
structure including strange quark matter and color-superconducting phases. Modern EOS studies for
neutron stars and compact stars, incorporating chiral effective field theory, perturbative QCD, and
observational constraints, already suggest that the speed of sound at several times nuclear
saturation density lies in a restricted range (typically 0.4 < c2/c? < 0.8), implying significant
resistance to compression. Incorporating such QCD-motivated stiffness into Einstein’s equations
raises the possibility that collapse is arrested at finite density and that classical singularities are
replaced by finite-radius cores.

Experimental discovery of tetraquarks, pentaquarks, and at least one non-trivial hexaquark
candidate confirms that QCD supports multi-quark states beyond conventional baryons and
mesons, motivating the concept of polyquark matter: macroscopically large, color-neutral
configurations with vast numbers of quarks bound by QCD and degeneracy pressure. In the
astrophysical limit, such matter would appear as a quark or strange star if its radius exceeds the
Schwarzschild radius, or as a finite-density polyquark core hidden behind an event horizon if it lies
inside.

Traditional strange-star models typically adopt specific EOSs (e.g. MIT bag models with fixed
parameters) and investigate horizonless compact configurations. The present work generalizes this
approach by:

(i) treating the EOS as a band of QCD-compatible possibilities defined by inequalities and
parameter ranges rather than a single curve, and

(i) explicitly addressing black-hole interiors, asking whether non-singular, finite-density
cores arise generically across that band.

The aim is to show that, for a broad class of EOSs consistent with QCD and current compact-star
constraints, general relativity admits polyquark-core solutionsthat replace singularities with
finite-density interiors while preserving the observed exterior black-hole spacetime.



2. Theoretical Framework
2.1 Static spherically symmetric equilibrium in GR

We assume a static, spherically symmetric configuration with metric
-1
ds? = —e?®Mc2qe? 4 (1__26(5\;1£r)) dr? + r2dQ?, (1)

where ®(r) is the gravitational potential and M (r) the enclosed mass—energy. The matter
distribution occupies 0 < r < R; forr > R the spacetime is Schwarzschild with mass M = M(R).

With a perfect fluid stress—energy tensor

T# , = diag(—ec? P,P,P), (2)

the Einstein equations G, = (87TG/C4)T,“, reduce to the Tolman-Oppenheimer-Volkoff (TOV)

equations
dM , € dP G (e +P/c?)(Mc? + 4nr3P)
——=dmr?—,— = —— , G
dr c?'dr c? 2 (1_ ZGM)
c?r
and
dd _ 1 dP

dr e+ P/c2dr’

Regularity at the center requires finite central energy density €. and pressure P. = P(€.), with
expansions

M(r) ~ %i—grip(r) ~ P 4+ 0(r2), d(r) ~ b, + O(r2), (r - 0). (5)

2.2 A QCD-compatible EOS band

Instead of a fixed EOS, we consider a family P(€; 8) parametrized by 8 € ©, constrained by QCD and
nuclear-physics results for dense matter. We impose:

(a) Density range of validity
We focus on energy densities

€min <es €max (6)



with

€min = 2 €nuc) €Emax ~ 8-10 €nucy (7)

where €,,. ~ (150-160) MeV fm™~3 is nuclear saturation energy density. This covers typical core
densities of massive neutron stars and candidate quark stars.

(b) Causality and stability

For all € € [€min, €Emax] @nd all 8 € O, the EOS satisfies

0<dP -0) < 0.8 ¢? 8
de(e,)_-c, (8)

ensuring positive compressibility and subluminal sound speed.
(c) High-density stiffness

At densities above a supranuclear threshold €, = 2.5-3 €,c,

02c2<d—P(6'9)<08c26>6 (9)
. _dE ) = U. ) = Cu

reflecting QCD-constrained stiffness at several times nuclear saturation.
(d) Asymptotic quark-matter form
At the upper end of the density band, we approximate the EOS by

P(€0) ~ a(8) (€ — €9(0)) + b(8) (€ — €(8))% € 2 5 €nyes (10)

with parameters constrained by QCD-inspired EOS fits:

0.25 < a(f) < 0.35, (11)
consistent with the pressure approaching an ultrarelativistic, near-conformal regime P ~
(0.25-0.35) € at high density;

€nuc < 60(6) < 3 €nucy (12)

locating the effective offset near the deconfinement scale;



0.3
0<bh(O) s E—,eref ~ 5 €nue (13)

ref

ensuring the quadratic term is a controlled correction to the leading linear behavior in the density
regime of interest.

This band is chosen to encompass existing strange-star EOSs with density-dependent bag
parameters and modern QCD-informed EOSs for neutron-star cores.

2.3 Boundary conditions, matching, and EOS-band mapping

Foreach EOS 6 € © and each central density €. € [€.min€cmax ] E [€mins €max], We integrate
Egs. (3)-(4) outward until

P(e(R); 6) = 0. (14)

This defines the stellar radius R(6, €.) and enclosed mass

M(6,e.) = M(R(6,€.)). (15)

At the surface, the interior metric matches the Schwarzschild exterior with

e?®® =1 — ZCCZ;AR/I (16)
and the surface redshift is
147, = (122077 )
The set of all such solutions defines a mass-radius band
Miang = {(M,R) | M =M(6,€:),R =R(6,€c),0 €O, €cmin < €c < Ecmax } (18)

Upper/lower envelopes My, (R) and M,;, (R) are obtained by taking maxima/minima
in M over 8 and €, at each R.

The compactness is

GM(0,€.)

C(6,e.) = —CZR(H, )

(19)



Configurations with C < 1/2 are horizonless; those with C > 1/2 lie at or inside their Schwarzschild
radius.

2.4 Regularity and non-singularity across the band
Foreach EOS 6 € 0O and stable central density €., the TOV solution is required to satisfy:
e Finite energy density and pressure

€(r;0,€.) < Emaxy P(150,€.) < Ppaxforall0 <r < R(6,€.), (20)

with P,,.x determined by the upper envelope of the EOS band.
e Finite curvature

0< K(T‘; 9» Ec) = Rllvalepa = Kmax,band < oo, (21)

forall0 <r <R.

Because the EOS band enforces finite and bounded dP /de over the density interval, and
because M (r) scales as r3 at small r for finite €., curvature invariants remain finite in all such
configurations. Singularities are thus absent within this band of QCD-compatible EOSs.

2.5 Stability across the EOS band

For each EOS 6 we obtain an equilibrium sequence M (€.; 8). Using the standard criterion for radial
stability, configurations are stable if

dM dM
—(08) > 0and become unstable when—(6) < 0. (22)
de, de.

The first local maximum of M (e.; 8) defines the maximum stable mass M, (6) for that EOS.
Collecting these over 8 € 0 yields a band of maximum stable masses

Mmax S Mmax(e) S Mmax’ (23)

and associated radii. Within this region, all configurations in M,,,q4 are both regular and dynamically
stable, and therefore viable candidates for strange/polyquark stars or finite-density black-hole
interiors.



3. Physical Implications
3.1 Mass-radius and compactness bands

The mass-radius band M,,,,q contains a continuum of solutions consistent with the EOS
inequalities and stability criteria. For QCD-motivated EOSs within the parameter ranges described
above, typical maximum masses cluster around My, ~ (2.0 + 0.5)M,, consistent with observed
massive neutron stars, while radii lie around 10 + 2 km.

The corresponding compactness band shows:

e Forsofter EOSs in the allowed band, stable configurations remain comfortably in the
horizonless regime (C < 0.3-0.4).

o For stiffer EOSs (higher dP /de within the allowed range), sequences can approach C = 1/2,
leading to near-horizon polyquark stars.

¢ Inprinciple, for extreme yet still allowed parameter choices at the stiff end, configurations
with C = 1/2 can occur, representing finite-density cores inside horizons.

Thus the band naturally covers ordinary neutron stars, quark/strange stars, and horizon-enclosed
polyquark cores within a single framework.

3.2 EOS band and singularity avoidance

Because the EOS band is constructed to ensure finite, bounded € and dP /de throughout the density
interval, and because all stable configurations satisfy the TOV equations with regular center and
finite radius, the central density and curvature remain finite across the band. Explicitly:

e €(r) < €nax and P(r) remain bounded by EOS-dependent but finite values.

e The Kretschmann scalar is bounded by K.« bang» determined by the stiffest, most compact
EOSs in the band.

The “end of singularity” is therefore not a property of a single fine-tuned EOS, but of a class of
QCD-consistent EOSs. Any EOS in this band leads to non-singular polyquark cores instead of
classical GR singularities for the corresponding stable configurations.

3.3 Observational and QCD constraints on the band
Observations and QCD calculations jointly shrink the allowed EOS band 0:
e Massive pulsars with M = 2 M, exclude EOSs that are too soft to support such masses.

e NICER and X-ray timing constraints on neutron-star radii further disfavor EOSs that predict
excessively large or small radii for given masses.



e Gravitational-wave measurements from binary neutron-star mergers constrain tidal
deformabilities and speed-of-sound behavior, ruling out EOSs that predict too extreme
deformations or too soft/hard behavior at certain densities.

The EOS band described by (6)-(13) is constructed to be broad enough to encompass current
QCD-constrained EOSs used in dense-matter and compact-star studies, while still ensuring
non-singular behavior. As new calculations and data further constrain the EOS, the allowed
parameter region © can be correspondingly narrowed without altering the structure of the
polyquark-core framework.

4. Discussion and Future Work
4.1 Relation to strange-star models

Traditional strange-star models typically adopt one or a few specific EOSs, such as
density-dependent bag models for strange quark matter, and explore the resulting horizonless
compact stellar configurations. The present framework generalizes this in two dimensions:

1. The EOS is treated as a band of QCD-compatible functions P(€; 8), with explicit upper and
lower bounds motivated by QCD and compact-star EOS inference.

2. The framework explicitly includes configurations inside the Schwarzschild radius, describing
finite-density polyquark cores hidden within black-hole exteriors, not only visible strange
stars.

Strange stars thus appear as a subset of the horizonless region of M},,4, While regular black-hole
interiors correspond to the horizon-enclosed region with non-singular cores.

4.2 Interface with quantum gravity and lattice QCD

The modelis purely semiclassical (GR + QCD EOS) but naturally interfaces with quantum-gravity
approaches that predict effective repulsion or regularization at extreme curvature. Here,
regularization occurs at QCD scales, well below the Planck scale: curvature saturates because
matter cannot be compressed arbitrarily, rather than because the gravitational theory itself is
modified.

Lattice QCD at high temperature and moderate baryon chemical potential, combined with effective
theories and perturbative QCD at high density, already provides non-trivial constraints on the
high-density EOS. As lattice methods improve toward larger u_B and lower T, these results can be
used to further narrow the EOS band 0, tightening predictions for polyquark cores and their
observable signatures.



4.3 Future directions
Key directions to strengthen and test this framework include:

e Implementing specific state-of-the-art QCD EOSs within the band and performing detailed
TOV integrations to map out M,,,,q and tidal deformability bands in direct comparison with
data.

e Extending to rotating and magnetized configurations to explore realistic polyquark cores and
strange stars with spin and strong magnetic fields.

e Computing gravitational-wave signatures and accretion behaviors for horizonless
near-horizon polyquark stars and comparing them to ringdown and accretion observables of
black-hole candidates.

5. Conclusion

By coupling a QCD-constrained band of equations of state to the Tolman-Oppenheimer-Volkoff
equations, this work shows that general relativity admits a broad class of finite-density polyquark
cores in place of classical black-hole singularities. The key ingredients are quark degeneracy
pressure and strong-interaction stiffness, encoded in EOS bounds motivated by nuclear physics,
QCD calculations, and compact-star observations.

Within this EOS band, stable solutions exhibit finite central density and bounded curvature, forming
a continuous spectrum that encompasses neutron stars, strange/polyquark stars, and regularized
black-hole interiors. Singularities are not required: spacetime curvature saturates because strongly
interacting matter resists unlimited compression. The framework is constructed to evolve as QCD
and observational constraints improve, providing a systematic, testable bridge between general
relativity and the strong interaction in the most extreme astrophysical environments.



Appendix A— Numerical Integration of the TOV Equations with EOS Ranges

For completeness, we summarize the numerical scheme for integrating the TOV equations with an
EOS band P(¢; 6).

1.

Initial conditions:
For each EOS parameter set 8 € 0 and central density €, € [€. min, €cmax |
EC

4m
To K1 km, E(ro) = € P(TO) = P(EC; 9)'M(r0) = ?T03 C_Z

Radial integration:
Integrate Egs. (3)—(4) outward with a fourth-order Runge-Kutta method, updating € via the
inverse EOS €(P; 0) (analytic or tabulated) at each step.

Surface location:
Stop when P crosses zero; interpolate to find R(8, €.) where P = 0 and set M(8,€.) = M(R).

Band construction:
Sample 6 € © and €, € [€. min €cmax | t0 build My,,4 and deduce
envelopes M,in (R), Mipax(R).

Stability and regularity:

For each EOS, examine M (€.; 0) to identify the maximum stable mass; verify numerically
that e(r), P(r), and curvature invariants remain finite for all stable configurations across the
sampled band.
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